GURUS PAPER 1 MARKING SCHEME

MATHEMATICS

$21 / 2$ Hours

Instructions to Candidates:

a) Write your name adm no, class and the date in the spaces provided above.
b) This paper contains two sections: Section I and Section II.
c) Answer all questions in section I and only five questions in section II.
d) Show all the steps in your calculations, giving your answer at each stage in the spaces below each question.
e) Marks may be given for correct working even if the answer is wrong.
f) Non-programmable silent electronic calculators and KNEC Mathematical table may be used, except where stated otherwise.
g) This paper consists of 14 printed pages
h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
i) Candidates should answer the questions in English

For Examiners use only.

SECTION II

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

Answer all the questions in this section in the spaces provided.

1. Evaluate without using a calculator

$$
\frac{45-8 \times-4-15 \div-3}{3 x^{-} 3+-8(6-2)}
$$

$$
\frac{45--32--5}{-9 \pm 8(4)}=\frac{45+32+5}{-9-32}=\frac{82}{-41}
$$

$$
=-2 \quad \text { A1 }
$$

2. Solve for n in $\frac{y^{7} \times y^{11}}{y^{4} \times y^{n}}=y^{5}$
(3 marks)
Apply ing the law of multiplication on the numerator and denominator

$$
\begin{gathered}
\frac{y^{7+11}}{y^{4+n}}=y^{5} \\
\frac{y^{18}}{y^{4+n}}=y^{5}
\end{gathered}
$$

Apply ing the law of division on the LHS

$$
\begin{array}{r}
y^{18-(4+n)}=y^{5} \\
y^{14-n}=y^{5}
\end{array}
$$

Since the bases are equal and the expressions are equal then the powers are equal

M1 (Applying addition law on both numerator and denominator)

M1 (Applying the law of division correctly)

$$
\begin{aligned}
14-n & =5 \\
14-5 & =n \\
9 & =n
\end{aligned}
$$

A1
3. A furniture dealer imported 25 Italian-made sofas at Ksh 120000 each. He sold 10 of them at a profit of 30% and the rest at a discount of Ksh 20000 each. Calculate his overall profit.

```
Cost Price \(=120000 \times 25\)
    \(=\) Ksh 3000000
Sales of 10 sofas \(=\frac{130}{100} \times 120000 \times 10\)
    \(=K \operatorname{sh} 1560000\)
Sales of 15 sofas \(=(120000-20000) \times 15\)
        \(=\) Ksh 1500000
Total sales \(=1560000+1500000\)
    \(=\) Ksh 3060000
Profit \(=3060000-3000000\)
\(=\) Ksh 60000
M1 (Total sales)
M1 (Cost price)
4. Denis sold 300 tickets for a music concert. He sold adult tickets at sh 500 each and children tickets at sh 400. He collected a total of sh 144400 in ticket sales. Determine the number children tickets he sold.

Let \(x\) be adult and \(y\) be children tickets sold then:
\[
\begin{aligned}
x+y & =300 \\
500 x+400 x & =144400 \\
500 x+500 y & =150000 \\
500 x+400 y & =144400- \\
100 y & =5600 \\
y & =56
\end{aligned}
\]

M1(Forming a pair of simultaneous equations)

\section*{M1 (Correct attempt to solve the pair of equations)}

\section*{A1}

M1(Forming the equation)

\section*{M1 (solving the equation)}

A1
(3 Marks)
5. A ship sails from point A on a bearing of \(035^{0}\) for 9.5 km to point B . At B the ship alters course and sails for 7 km on a bearing of \(170^{\circ}\) to point C . Use a scale drawing to find the distance and bearing of A from C.


B1 (Point B correctly located) B1 (Point C correctly located
6. Given that \(\sin x=\frac{2}{5}\), find the exact value of \(\cos ^{2} x\)

ALTERNATIVE 1
\(\cos x=\frac{\sqrt{21}}{5}\)
B1
\(\cos ^{2} x=\frac{21}{25}=0.84\)
B1

ALTERNATIVE 2
Or
\(x=\sin ^{-1}\left(\frac{2}{5}\right)=23.57817848\)
\(\cos \left(\sin ^{-1}\left(\frac{2}{5}\right)\right)=0.916515139\)

\section*{B1(for \(\cos \mathbf{x})\)}
\(\cos ^{2} x=0.84\)

\section*{B1}
7. A train whose length is 86 m is travelling at a speed of \(28 \mathrm{~km} / \mathrm{h}\) in the same direction as a truck whose length is 10 m . if the truck takes 10.8 s to completely overtake the train, calculate the speed of the truck in \(\mathrm{km} / \mathrm{h}\).
\[
\begin{aligned}
\frac{86+10}{x-\left(28 \times \frac{5}{18}\right)} & =10.8 & & \text { M1 } \\
\frac{96}{x-\frac{70}{9}} & =10.8 & & \\
x & =16 \frac{2}{3} & & \\
x & =16 \frac{2}{3} \times \frac{18}{5} & & \text { M1 (conversion) } \\
x & =60 \mathrm{~km}^{-1} & & \text { A1 }
\end{aligned}
\]
8. The displacement \(S\) metres of a particle moving in a straight line after \(t\) seconds is given by \(S=2 t^{2}+3 t-6\). Find the velocity of the particle during the fourth second.
\[
v=\frac{d s}{d t}=4 t+3
\]
at \(t=3\)
\(v=4(3)+3=15\)
\(v=5 \mathrm{~ms}^{-1}\)

10. The surface areas of two similar solids are \(352 \mathrm{~cm}^{2}\) and \(792 \mathrm{~cm}^{2}\) respectively. If the smaller solid has a mass of 1408 g , find the mass of the larger solid.
\[
\begin{array}{rlr}
A S F & =\frac{792}{352}=\frac{9}{4} & \text { M1 } \\
\text { LSF } & =\sqrt{\frac{9}{4}}=\frac{3}{2} & \\
V S F & =\left(\frac{3}{2}\right)^{3}=\frac{27}{8} \\
\frac{27}{8} & =\frac{x}{1408} & \text { M1 } \\
x & =4752 g & \text { A1 }
\end{array}
\]
11. David paid rent using \(\frac{1}{10}\) of his salary. He used \(\frac{1}{2}\) of the remaining amount to make down payment for a plot. He gave his mother Ksh. 2500 and paid school fee balance for his son of Ksh. 7500 . He then saved Sh. 12,500 . How much was the down payment for the plot?
(4marks)
Let the salary be \(x\)
Rent \(=\frac{1}{10} x\)
Remainder \(\frac{9}{10} x\)
Down payment \(=\frac{1}{2} \times \frac{9}{10} x=\frac{9}{20} x\)
M1 (expression for downpayment)
\(x-\left(\frac{1}{10} x+\frac{9}{20} x\right)=2500+7500+12500\)
\[
x=50000
\]

\section*{M1(forming the equation)}

A1
Down payment \(=\frac{9}{20} \times 50000=22500\)
B1
12. Using a ruler and a pair compass only, construct a triangle ABC such that \(\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}\) and \(\mathrm{AC}=\) 11 cm . draw a circle passing through the vertices of the triangle. Measure the radius of the circle.


B1 (triangle
ABC drawn)

B1 (for center determined)

B1 (circle drawn)

B1(for radius \(=\) 5.6 cm )
13. An interior angle of a regular polygon is five times its exterior. Find the number of sides of the polygon.
(3marks)
\[
\begin{aligned}
x+5 x & =180 \\
x & =30
\end{aligned}
\]

\section*{B1 (for the exterior angle)}
number of sides \(=\frac{360}{30}\)
\[
=12
\]

B1
14. A rectangle whose length is 9 cm longer than its width has an area of \(36 \mathrm{~cm}^{2}\). If the width is xcm , form an equation in x and solve it to find the dimensions of the rectangle
\[
\begin{aligned}
& x(x+9)=36 \\
& x^{2}+9 x-36=0
\end{aligned}
\]

\section*{M1(forming the equations}
\[
x=\frac{-9 \pm \sqrt{(-9)^{2}-4(1)(-36)}}{2(1)}
\]

\section*{M1(solving \\ Accept alternatives ie \((x+12)(x-3)=0\)}
\(x=3\) or -12
length \(=12 \mathrm{~cm}\) and widt \(h=3 \mathrm{~cm}\)
15. Solve for \(3-3 x \leq x+7 \leq 9-x\) hence state the integral values of \(x\)
```

$3-3 x \leq x+7$
$3-7 \leq x+3 x$
$-4 \leq 4 x$
$-1 \leq x$
$x+7 \leq 9-x$
$2 x \leq 2$
$x \leq 1$
$-1 \leq x \leq 1$

```

\section*{B1 (for either correct inequality}

\section*{B1(for the compound statement)}

B1 (for the integers)
16. In triangle TXZ below, \(\mathrm{TX}=12.5 \mathrm{~cm}\) and angle \(\mathrm{TZX}=37^{0}\). Y is a point on the line XZ such that \(\mathrm{TY}=9.9 \mathrm{~cm}\), angle \(\mathrm{XTY}=23^{\circ}\) and angle \(\mathrm{YTZ}=71^{\circ}\).


Calculate to 1 decimal place:
a) the length of side \(X Y\)
\[
\begin{aligned}
(X Y)^{2} & =12.5^{2}+9.9^{2}-2 \times 12.5 \times 9.9 \cos 23^{\circ} \quad \text { M1 } \\
X Y & =\sqrt{35.64} \\
X Y & =6.0 \mathrm{~cm}
\end{aligned}
\]
b) The length of side TZ
\[
\angle T Y Z=180-(71+37)=72^{\circ}
\]
\[
\therefore \frac{T Z}{\sin 72}=\frac{9.9}{\sin 37}
\]
\[
T Z=\frac{9.9 \sin 72}{\sin 37}
\]
\[
T Z=15.6 \mathrm{~cm}
\]

\section*{SECTION II (50 MARKS)}

Answer only five questions from this section in the spaces provided.
17. The figure below shows a model of a storage tank is made up of a conical top, a hemispherical bottom and the middle part is cylindrical. The total height of the model is 15 cm , diameter of the cone, cylinder and the hemisphere is 6 cm and the height of the cylindrical part is 8 cm .


Calculate:
a) the total external surface area of the model in terms of \(\pi\)
\[
\begin{array}{rlrl}
\text { Area } & =2 \pi(3)^{2}+\pi \times 6 \times 8+\pi \times 3 \times 5 & & \text { M1 (Area of hemisphere) } \\
& =81 \pi \mathrm{~cm}^{2} & & \text { M1 (Area of curved surface of cylinder } \\
& & \text { B1(for } 5 \text { slant height of cone } \\
& & \text { M1 (Area of curved surface of cone) } \\
& & \text { A1 }
\end{array}
\]
b) the total volume of the model in \(\mathrm{cm}^{3}\) correct to 2 significant figures,
\[
\begin{aligned}
\mathrm{Vol} & =\frac{2}{3} \pi \times 3^{3}+\pi \times 3^{2} \times 8+\frac{1}{3} \pi \times 3^{2} \times 4 \\
& =320 \mathrm{~cm}^{3}
\end{aligned}
\]

M1 (vol of hemisphere)
M1 (vol of cylinder
M1 (vol surface of cone)
M1 (Adding the volumes)
A1
18.

19. The table below shows the age in years of workers in a factory
\begin{tabular}{|l|c|c|c|}
\hline Age \(x\) & x & f & fx \\
\hline \(15-20\) & 17.5 & 4 & 70 \\
\hline \(20-25\) & 22.5 & 10 & 225 \\
\hline \(25-30\) & 27.5 & 6 & 165 \\
\hline \(30-40\) & 35 & 22 & 770 \\
\hline \(40-60\) & 50 & 8 & 400 \\
\hline & & \(\sum f=50\) & \(\sum f x=1630\) \\
\hline
\end{tabular}
a) Calculate the estimate of:
(i) The mean age of the workers
\[
\begin{aligned}
\text { Mean } & =\frac{1630}{50} & & \mathbf{M 1} \text { (fx column) } \\
& =32.6 & & \mathbf{M 1}
\end{aligned}
\]
(ii) The median age of the workers
\[
\begin{aligned}
& \text { Cf } 4,14,20,42,50 \\
& \text { Median }=30+\frac{5}{22} \times 10 \\
& =32 \frac{3}{11}=32.27
\end{aligned}
\]
b) (i) Draw a histogram to represent the data

\section*{B1 (for cf)}

M1
A1

B3(All the rectangles correct)

B2 (At least 4 rectangles correct)

B1(At least 3 rectangles correct)

NB Frequency Density can be used too.
(ii) Use the histogram to determine the number of workers who are aged 23 and below years.
(1 mark)
23 year and below \(=4+\frac{30}{50} \times 10=10\) people
20. a) Given \(\mathbf{A}=\left(\begin{array}{cc}-2 & 4 \\ 1 & 0\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}0 & 1 \\ p & q\end{array}\right)\), and that \(\mathbf{A B}=\mathbf{I}\), find the value of p and q. . (4 marks)
\[
\begin{aligned}
&\left(\begin{array}{cc}
-2 & 4 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
p & q
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
&\left(\begin{array}{cc}
4 p & -2+4 q \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
\]

\section*{M1 (correct equation with I)}

M1 Correct LHS)
therefore:
\[
\begin{aligned}
4 p & =1 \\
p & =\frac{1}{4}
\end{aligned}
\]

A1
and
\[
\begin{aligned}
-2+4 q & =0 \\
4 q & =2 \\
q & =\frac{1}{2}
\end{aligned}
\]

B1
b) Find \(\mathbf{P}^{-1}\), the inverse of the matrix \(\mathbf{P}=\left(\begin{array}{ll}5 & 3 \\ 2 & 7\end{array}\right)\).

Hence determine the coordinates of the point of intersection of the lines:
\(5 \mathrm{x}+3 \mathrm{y}=21\) and \(2 \mathrm{x}+7 \mathrm{y}=20\)
\[
\begin{aligned}
\boldsymbol{P}^{-\mathbf{1}} & =\frac{1}{29}\left(\begin{array}{cc}
7 & -3 \\
-2 & 5
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{7}{29} & -\frac{3}{29} \\
-\frac{2}{29} & \frac{5}{29}
\end{array}\right)
\end{aligned}
\]
\[
\left(\begin{array}{ll}
5 & 3 \\
2 & 7
\end{array}\right)\binom{x}{y}=\binom{21}{20}
\]
\[
\left(\begin{array}{cc}
\frac{7}{29} & -\frac{3}{29} \\
-\frac{2}{29} & \frac{5}{29}
\end{array}\right)\left(\begin{array}{ll}
5 & 3 \\
2 & 7
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
\frac{7}{29} & -\frac{3}{29} \\
-\frac{2}{29} & \frac{5}{29}
\end{array}\right)\binom{21}{20}
\]
\[
\binom{x}{y}=\binom{3}{2}
\]
\[
x=3 \text { and } y=2
\]

Point of intersection (3,2)
21. On the grid provided, Using a scale of 1 cm to represent 5 units on each axis and taking values of x from -40 to 40 and values of \(y\) from -10 to 40 .
a) Draw triangle PQR with vertices \(\mathrm{P}(15,5), \mathrm{Q}(30,10)\) and \(\mathrm{R}(35,20)\)

b) Draw triangle \(\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}\), the image of triangle PQR under reflection in the line \(\mathrm{y}=2 \mathrm{x}\). (3 marks)
c) Draw triangle \(P\) " \(\mathrm{Q}^{\prime}\) " R ", the image of triangle \(\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}\), under a reflection in the line \(\mathrm{y}+\mathrm{x}=0\).
(2 marks)
d) Determine by construction, the centre and the angle of rotation that maps triangle \(P\) " \(Q\) " \(R\) " onto triangle PQR.
(3 marks)
Centre of rotation ( 0,0 )
Angle of rotation \(-143^{0}\) or \(217^{0}\)
a) B1 correct scale

\section*{\(B 1\) triangle \(P Q R\) drawn and correctly labeled}
b) B1 line \(y=2 x\) drawn

B1 any of the three points \(P^{\prime}, Q^{\prime}, R^{\prime}\) located correctly
\(B 1\) correct triangle \(P^{\prime} Q^{\prime} R^{\prime}\) drawn and labelled
c) B1 line \(\mathbf{y}+\mathrm{x}=\mathbf{0}\) drawn

B1 correct triangle \(P\) " \(Q\) " \(R\) " drawn and labelled
d) B1 Perpendicular bisector of line RR" constructed

B1 centre of rotation
Bi Angle of rotation
22. In the figure below \(S\) divides \(Q R\) in the ratio 1:2, \(T\) divides \(O S\) in the ratio 3:2, \(\mathbf{O R}=\mathbf{r}\) and \(\mathbf{O Q}=\mathbf{q}\).

a) Write in terms of \(\mathbf{q}\) and \(\mathbf{r}\) :
i) \(\quad \mathbf{R Q}\)
ii) OS
\[
\begin{array}{ll}
q+\frac{1}{3}(-q+r) & \text { M1 } \\
\frac{2}{3} q+\frac{1}{3} r & \text { A1 }
\end{array}
\]
iii) \(\mathbf{R T}\)
\[
\begin{aligned}
& -r+\frac{3}{5}\left(\frac{2}{3} q+\frac{1}{3} r\right) \\
& \frac{2}{5} q-\frac{4}{5} r
\end{aligned}
\]
b) i) If \(L\) is the midpoint of line \(O Q\), show that the points \(R, T\) and \(L\) are collinear.
\[
R \mathrm{~L}=-r+\frac{1}{2} q=\frac{1}{2} q-\mathrm{r}
\]

Let \(\boldsymbol{R} \mathbf{L}=\boldsymbol{m} \boldsymbol{R} \boldsymbol{T}\)
\[
\begin{aligned}
& \frac{1}{2} q-r=\frac{2}{5} m q-\frac{4}{5} \mathrm{mr} \\
& \frac{4}{5} m=1 \quad \text { and } \frac{1}{2}=\frac{2}{5} m \\
& m=\frac{5}{4} \quad \Rightarrow m=\frac{5}{4} \\
& \therefore \quad R \mathrm{~L}=\frac{\mathbf{5}}{\mathbf{4}} \boldsymbol{R T} \\
& \Rightarrow \quad \boldsymbol{R} \mathbf{L} \text { is parallel to } \boldsymbol{R} \boldsymbol{T}
\end{aligned}
\]

Since \(R\) is a common point, \(R, T\) and L are collinear

M1 (For RL or any other relevant vector)

M1(looking for the scalar)

B1(mentioning parallel and picking out the common point
ii) Hence find the ratio of RT:TL
23.
a) On the grid provided, draw the graph of the function \(y=\frac{1}{2} x^{2}-x+3\) for \(0 \leq x \leq 6\). (3 marks)

b) Use the graph and the trapezium rule, to approximate the area under the curve between \(x=1, x=6\) and the x axis using 6 ordinates.
(3 marks)
\[
\begin{aligned}
& A=\frac{1}{2} \times 1[2.5+15+2(3+4.5+7+10.5)] \\
& A=33.75 \text { sq Units }
\end{aligned}
\]

\section*{B1(for the correct ordinates) \\ M1}

A1
c) Calculate the mid-ordinates for 5 strips between \(\mathrm{x}=1\) and \(\mathrm{x}=6\) and hence use the mid-ordinate rule to approximate the area under the curve between \(\mathrm{x}=1, \mathrm{x}=6\) and the x axis.
\begin{tabular}{|l|c|c|c|c|c|}
\hline x & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 \\
\hline y (mid ordinate) & 2.625 & 3.625 & 5.625 & 8.625 & 12.625 \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { Area } & =1[2.625+3.625+5.625+8.625+12.625] \\
& =33.125 \text { sq units }
\end{aligned}
\]

\section*{B1(for the correct ordinates)}
d) Determine the difference in area between the trapezium rule and the mid-ordinate rule estimates
(1 mark)
\[
33.75-33.125=0.625 \quad \text { B1 }
\]
24. The equation of a curve is \(y=2 x^{3}-9 x^{2}+12 x-9\).
a) The gradient of the curve when \(x=2\).
\(\frac{d y}{d x}=6 x^{2}-18 x+12\)
at \(x=3\)
\(6(3)^{2}-18(3)+12\)
gradient \(=12\)
b) i) The turning points of the curve.
\[
\frac{d y}{d x}=6 x^{2}-18 x+12
\]

At stationary point \(\frac{d y}{d x}=0\)
\[
\begin{array}{ll}
\therefore 6 x^{2}-18 x+12=0 & \text { M1 } \\
(6 x-12)(x-1)=0 & \text { A1 } \\
\Rightarrow x=1 \text { or } 2 &
\end{array}
\]
\[
\begin{aligned}
& \text { At } x=1 \\
& \begin{array}{l}
y=2(1)^{3}-9(1)^{2}+12(1)-9=-4 \\
\quad \text { Point }(1,-4) \\
\text { at } x=2 \\
y=2(2)^{3}-9(2)^{2}+12(2)-9=-5
\end{array}
\end{aligned}
\]
\[
\text { Point }(2,-5)
\]

\section*{B1(for both points)}
ii) The nature of the turning point \(b(i)\) above.

Second derivative \(\frac{d^{2} y}{d x^{2}}=12 x-18\)
at the point \((1,-4)\)
\(12(1)-18=-6\)
Since the value of the second derivative is negative the point is a maximum
At the point (2, -5)
\[
12(2)-18=6
\]

Since the value of the second derivative is positive the point is a minimum
c) Sketch the curve.


B1 for the \(y\) intercept B1 for the sketch```

