ANESTAR SCHOOLS

MATHEMATICS
FORM TWO
END-OF-YEAR EXAM - 2022

MARKING SCHEME:

SECTION I:

1. Solve the following simultaneous equation

$$
2 x+3 y=8
$$

$$
5 x-y=3
$$

Ans
$1(2 x+3 y=8)$
$3(5 x-y=3)$
$2 x+3 y=8$
$+\begin{aligned} & 15 x-3 y=9 \\ & 17 x=17\end{aligned}$
$x=1$
$5 x-y=3$
$5-3=y$
$y=2$
2. The internal and external diameters of a spherical shell are 12 cm and 8 cm respectively. Calculate the volume of material of the shell.

$$
\begin{aligned}
& V=\frac{4}{3} \times \frac{22}{7} \times 6^{3}=905.143 \mathrm{~cm}^{3} \\
& V=\frac{4}{3} \times \frac{22}{7} \times 4^{3}=\underline{268.190 \mathrm{~cm}^{3}} \\
& \text { Shell }
\end{aligned}
$$

$$
=636.953 \mathrm{~cm}^{3}
$$

3. Use reciprocal tables and square root tables to evaluate:

$$
\frac{1}{3.953}+\sqrt{2.458}
$$

Ans:
$0.2529+1.568$
$=\underline{\underline{1.821}}$
4. Evaluate without using a calculator
$\frac{-9+(-7) \times(-8)-(-5)}{-2+(-6) \div 3 \times 6}$
5. Solve $\sqrt{\frac{1.843 \times 0.048}{11.53}}$ using logarithm tables.

Number	Std. fom	\log
1.843	1.843×10^{0}	$\mathbf{0 . 2 6 5 5}$
0.048	4.8×10^{-2}	$\overline{2} .6812$
		$\overline{2} .9467$
11.53	1.153×10^{1}	$\underline{\underline{1} .0619}$
		$\overline{\overline{3}} .8848$

$$
\begin{gathered}
\frac{\overline{3} .}{3}+\frac{0.8849}{3} \\
1.972 \times 10^{-1} \\
=0.1972
\end{gathered}
$$

6. (a) Find the gradient of the straight line passing through the points $P(2,3)$ and Q (8,-6)
(1mk)
Gradient $=\frac{3--6}{2-8}$
$=\frac{9}{-6}$
$=\frac{-3}{2}$
(b) hence find the equation of a line parallel to the straight line and passing through $\mathrm{R}(1,2)$ in the form of $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.

Ans
$(x, y)(1,2) \quad \frac{-3}{2}$
$\frac{y-2}{x-1}=\frac{-3}{2}$
$y-2=\frac{-3}{2} x+\frac{3}{2}$
$y=\frac{-3}{2} x+\frac{7}{2}$
7. The corresponding sides of two similar regular pentagons are 3 cm and 7 cm respectively.
a) Find the ratio of their areas.

$$
\begin{aligned}
& L S F=\frac{3}{7} \\
& A S F=\frac{9}{49}
\end{aligned}
$$

b) Calculate the area of the larger if the area of the smaller is $36 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& \quad 4 \\
& \frac{49}{9} \times 36=196 \\
& =196 \mathrm{~cm}^{2}
\end{aligned}
$$

8. A triangular flower garden measure $10 \mathrm{~m}, 15 \mathrm{~m}$ and 24 m . Find the area of the garden.

$$
\begin{aligned}
& S=\frac{P}{2}=\frac{49}{2}=24.5 \\
& \sqrt{S(5-a)}(5-b)(5-b)
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{24.5}(24.5-10) 24.5-15) 245.24 & \\
=\sqrt{24.5} & \times 14.5 \times 9.5 \times 0.5 \\
& =41.08 \mathrm{~cm}^{2}
\end{aligned}
$$

9. Two arms of a pair of divider are spread so that the angle between them is 90°. Find the area of the sector formed if the length of an arm is 8.2 cm . (3mks)

$$
\begin{aligned}
& A=\frac{0}{360} x r^{2} \\
& =\frac{90}{360} \times \frac{22}{7} \times 8.2^{2} \\
& =52.83 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2^{1} / 5^{2} / 3 \text { of } 3^{3} / 4-4^{1} / 6}{1^{1} / 4^{-2}-2^{2} / 5 \div 1^{1} / 3^{-3^{3} / 4}} \\
& \frac{11}{5}+\frac{2}{3} \times \frac{15}{4}-\frac{25}{6} \\
& \frac{11}{5}+\frac{5}{2}-\frac{25}{6} \\
& =\frac{8}{15} \\
& \frac{5}{4}-\left(\frac{12}{5} \div \frac{4}{3}\right)-\frac{15}{4} \\
& \frac{5}{4}-\frac{9}{5}-\frac{15}{4} \\
& \frac{8}{15} \times \frac{10}{43} \\
& =\frac{-16}{129}
\end{aligned}
$$

10.Without using a calculator, evaluate;
11.An observer stationed 20 m away from a tall building finds that the angle of elevation of the top of the building is 68° and angle of its foot is 50°. Calculate the height of the building.

$$
\begin{gathered}
\text { Tan } 50=\frac{x}{20} \\
x=23.84
\end{gathered}
$$

$$
\operatorname{Tan} 60=\frac{h}{20}
$$

$$
h=34.64
$$

$$
h=10.8
$$

12. Factorize the following;

$$
\begin{aligned}
& 4 x^{2}+7 \mathrm{x}+3 \\
& S=7 P=12 \\
& \left(4 x^{2}+4 x\right)+(3 x+3) \\
& 4 x(x+1)+3(x+1) \\
& (4 x+3)(x+1)
\end{aligned}
$$

13.Find the integral values of the inequalities.

$$
-1 \leq 3 x-1<5
$$

$$
3 x-1<5
$$

$$
3 x<6
$$

$$
x<2
$$

$$
-1 \leq 3 x-1
$$

$$
0 \leq 3 x
$$

$$
0 \leq x
$$

$$
0 \leq x<2
$$

$$
0, \overline{1} \text { integral values. }
$$

14. Three years ago, Juma was three times as old. as Ali and in two years time, the sum of their ages will be 62. Determine their present ages
(3mks)

	3 years ago	present	$2 y r s$
Juma	$x-3$	$x(42)$	$x+2$
Sli	$y-3$	$y(16)$	$y+2$

$x-3=3(y-3)$

$$
x 3=3 y-9
$$

$$
\begin{gathered}
x+2+y+2=62 \\
x+y=58 \\
-x-3 y=-6 \\
4 y=64
\end{gathered}
$$

$$
\begin{aligned}
& x+y=58 \\
& x=58-16
\end{aligned}
$$

$$
y=16
$$

15.The figure below shows a cirlcle with centre O . Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and if

16. A tourist visited Kenya with 2500 US dollars and changed the US dollars into Kenya shillings at a local bank in Kenya when the exchange rates at the time were as follows:

	Buying	Selling
1 US dollar	shs.78.45	shs. 78.55
1 Sterling Pound	shs.120.25	shs. 120.45
a) How much did he get in Kenya shillings?		
$\mathbf{2 5 0 0} \boldsymbol{X} \mathbf{7 8 . 4 5}$		
$=\mathbf{1 9 6 1 2 5} /=$		

b) While in Kenya he used shs. 80,000 and after his stay he converted the remaining amount into Sterling pounds. Calculate to 2 decimal places the Sterling pounds that he got (2 mks)

196125 $\frac{80000}{16125}$
116125
116125
120.45
= 964.09 Sterling Pounds.

SECTION II:

Answer any THREE Question.

17. The table below shows the names of 200 persons measured to the nearest kg

Mass (kg)	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$	$100-109$
No. of persons	9	27	70	50	26	12	6

(a) State the modal class

(b) Calculate the median mass

$$
\begin{aligned}
59.5+ & \frac{\left(\frac{200}{2}-36\right) \times 10}{70} \\
& =68.64
\end{aligned}
$$

18. Using a ruler and pair of compasses only.
a) Construct a triangle ABC in which $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BAC}=371 / 2^{\circ}$. (5 mks)
b) Drop a perpendicular from C to meet AB at D . Measure CD and hence find the area of triangle ABC .
19.A motorist left Embu for Nairobi a distance of 240 km at $8: 00$ a.m and travelled at average speed of $90 \mathrm{~km} / \mathrm{hr}$. Another motorist left Nairobi for Embu at 8:30a.m and travelled at $100 \mathrm{~km} / \mathrm{hr}$. Find;
a) The time they met.

8.30 am

62
9.32 am
b) How far they met from Nairobi.

```
T= 39/38hr
S = 100km/hr
D= 102.63 km
```

c) The time of the day each motorist arrived at his destination. (4mks)

Embu \longrightarrow Nairobi	NairobiEmbut
$\mathrm{D}=240 \mathrm{~km}$	$\mathrm{D}=240 \mathrm{~km}$
$\mathrm{~S}=90 \mathrm{~km} / \mathrm{hr}$	$\mathrm{S}=100 \mathrm{~km} / \mathrm{hr}$
$\mathrm{T}=2 \mathrm{hr} 40 \mathrm{mins}$	$\mathrm{T}=2 \mathrm{~h} 24 \mathrm{mins}$
8.00	8.30
$\underline{2.40}$	$\underline{2.24}$
10.40 am	10.54 am

20. i) $\mathbf{8 8} \mathbf{~ k m} \pm \mathbf{1}$ and $\mathbf{0 4 9}{ }^{\circ} \pm 1$
(ii) $96 \mathrm{~km} \pm$ and $254^{0} \pm 1$
(iii) $\mathbf{9 0}+\mathbf{3 1}$
$=121 \pm \mathbf{2}^{0}$
