FORM 3 EXAM 2022 CHEMISTRY PAPER 233/1 MARKING SCHEME

- I: Is impure substance: melting point is lower ✓ ¹/₂ than pure substance where as boiling point is higher than ✓ ¹/₂ of pure substance.
 - II. Pure substance \checkmark 1/2; Both melting and boiling points are constant. \checkmark 1/2
- 2. (a)

- (b) (i) Covalent bond $\checkmark \frac{1}{2}$
 - (ii) Co-ordinate bond \checkmark 1/2
- 3. (i) He did not collect any of the ammonia gas. $\checkmark 1$
 - Ammonia gas reacts with concentrated sulphuric acid $\checkmark 1$

(ii) $2NH_{3(g)} + H_2SO_{4(l)} \longrightarrow (NH_4)_2SO_{4(aq)} \checkmark 1$

- (iii) Anhydrous calcium oxide ✓ ¼
- 4. (a) D and E \checkmark 1
 - (b) B and C \checkmark 1
 - (c) Pigment A, B, C, D and E ✓ 1
 All other pigments other than F. ✓ 1
- 5. (a) A white solid of silver chloride was seen at the tip of the glass rod where the drop was. \checkmark 1
 - (b) $HCl_{(g)} + AgNO_3 \longrightarrow AgCl_{(s)} + HNO_3$

$$\operatorname{Ag}_{(aq)}^{+} + \operatorname{Cl}_{(aq)}^{-} \longrightarrow \operatorname{AgCl}_{(s)} \checkmark 1$$

- 6. (a) Isotopes; Are atoms of the same element with same number of protons but different numbers of neutrons. ✓ 1
 - (b) No. of neutrons.

 $18 - 8 = 10 \checkmark \frac{1}{2}$

- 7. (a) Raises the PH of the soil. ✓ 1
 Lowers the acidity of the soil.
 - (b) Adds nutrients to the soil. $\checkmark 1$
- 8. (a) But-1-ene ✓ 1

H H CH₃
| | | |
(b)
$$H_2C - C = C - CH_2 \checkmark \frac{1}{2}$$
 and $H_3C - C = CH_2 \checkmark$

- But $-2 \text{ene} \checkmark \frac{1}{2}$ 2-methylprop $-2 \text{ene} \checkmark \frac{1}{2}$
- 9. (i) $3Mg_{(s)} + N_{2(g)} \longrightarrow Mg_3N_{2(s)} \checkmark 1$
- (ii) $2Mg_{(s)} + O_{2(g)} \rightarrow 2MgO_{(s)} \checkmark 1$
- 10. (a) Aluminium has more ✓ ½ delocalised electrons in its structure than sodium which has one per atom ✓ ½ forming a stronger metallic bond ✓ ½.
 - (b) Iodine has a stronger molecules due to strength of van-der waals forces ✓ ½ increasing down ✓ ½ the group compared to chlorine with weaker ✓ ½ van der waals forces.

 $1/_{2}$

11. ((a) Em	pirical	formula.
-------	--------	---------	----------

11. (a) Empirica	al forn	nula.		
I	Elements	:	Carbon	:	Hydrogen
			С	:	Н
9	6 Mass		<u>82.75</u>	:	<u>17.25</u> ✓ ½
F	R.A.M		12		1
Ν	Aoles		6.89	:	17.5 ✓ ½
Ν	Aole ratio		<u>6.89</u>	:	<u>17.3</u>
			6.89		6.89
	(1:2.5)	$2 \checkmark \frac{1}{2}$			
	$E.F C_2H$	[₅ ✓ ½	2		
(b) $M.F = (I$	E.F)n			
	$n = \frac{M.F}{F.M}$	✓ ¹ / ₂ =	$\frac{5.8}{2.9} = 2$		
	$M_{F} = 0$	C_4H_{10}	$\sqrt{1/2}$		
12. (a) Element	C ✓	1		
(b) A and B	√ 1	-		
(c) $2B_{(s)} + 2$	2H2Oa	, 	2BO	$H_{(2q)} + H_{2(q)} \checkmark 1$
13. (a) (i) Brow	vn fun	nes of a g	as (N	$VO2$) was seen $\checkmark 1$
((ii) The	glowi	ng splint	was	relighted. \checkmark 1
(b) 2Cu(NO	$(3)_{2}$	Heat 2	2Cu($D_{(s)} + 4NO_{2(o)} + O2_{(o)}$
14. (a) The gas	C2H4	decolou	rised	potassium \checkmark 1 manganate (VII) where as C2H6 did not \checkmark 1, but it
	remaine	d purr	ole in it.		
(b) (i) Mak	ing po	lythene b	bags.	✓ 1
,	(ii) Ripe	ening of	of fruits.	U	
15. (i) Mass of	anhyc	lrous bari	ium (chloride formed = $(40.30 - 36.12)g \checkmark \frac{1}{2} = 4.18g \checkmark \frac{1}{2}$
(ii) Mass of	water	of crysta	lliza	tion = $(41.00 - 40.30)g \checkmark \frac{1}{2} = 0.70g \checkmark \frac{1}{2}$
(iii) Mass of	f wate	r of cryst	alliz	ation contained in one mole of hydrated barium chloride = $\frac{20.8 \times 0.7}{4.18} g \checkmark \frac{1}{2}$
	= 34.8g	✓ ½			
16. (a) Because	the re	action is	exot	hermic ✓ 1
(b) $3Cl_{2(g)} +$	$2Fe_{(s)}$		2FeC	$\mathfrak{l}_{3(s)} \checkmark 1$
17. (a) – Carbo	n ✓ 1			
	- Hydrog	gen √	1		
(b) – Carbo	on (IV)) Oxide 🗸	1/2	
	- Water	✓ ½			
18. <i>A</i>	Aluminium	chlori	ide is mad	le up	o of molecules \checkmark $\frac{1}{2}$ thus makes it soluble in organic solvents \checkmark $\frac{1}{2}$
Ν	Aagnesium	chlor	ide is ma	de uj	p of ions $\checkmark \frac{1}{2}$ which makes it insoluble in organic solvents. $\checkmark \frac{1}{2}$
19. (a) Allotrop	es are	different	form	ns of the same element but in the same physical state $\checkmark 1$
(b) – Mono - Rhomł	liclini bic sul	c sulphur lphur ✓ 1	· ✓ 1	
20. N	$a_2CO_{3(s)} +$	2HCl	(ag)		$\rightarrow 2 \text{NaCl}_{(aq)} + CO_{(2)(q)} + H_2O_{(1)}$
5	5.3g		(1)		
١	No. of mole	s of N	$a_2CO_3 =$	$\frac{5.3}{106}$ =	= 0.05 moles $\checkmark \frac{1}{2}$
N	Aole ratio I	Na ₂ CC	$O_3: CO_2$	-	
			1 :1√!	/2	

 \Rightarrow Moles of CO2 produced is 0.05 \checkmark $\frac{1}{2}$ 1 mole of CO2 occupies -22.4 dm³ \checkmark $\frac{1}{2}$

0.05 moles - ? = 0.05 x 22.4 $= 1.12 \text{dm}^3 \text{ of } \text{CO}_2 \checkmark \frac{1}{2}$ 21. (a) $\operatorname{Ba}_{(aq)}^{2+} + \operatorname{CO}_{3}_{(aq)}^{2-} \longrightarrow \operatorname{BaCO}_{3(s)} \checkmark 1$ (b) $\operatorname{Cu}_{(aq)}^{2+} + \operatorname{Fe}_{(s)} \longrightarrow \operatorname{Cu}_{(s)} + \operatorname{Fe}_{(aq)}^{2+} \checkmark 1$ (c) $Zn(s) + 2H_{(aq)}^{+} \qquad Zn_{aq}^{2+} + H_{2(g)} \checkmark 1$ 22. (a) X – Potassium Nitrate ✓ 1 (b) $H_2SO_4 + KNO_{3(aq)} \longrightarrow KHSO_{4(aq)} + HNO_{3(aq)} \checkmark 1$ (c) It is yellow because it has dissolved NO₂ gas. \checkmark 1 23. (a) (i) Anode (+) – Bromine gas is produced. $\checkmark 1$ (ii) Cathode (-) – Lead metal is deposited. (b) – Electroplating - Purification of metals - Extraction of metals (Any one) $\checkmark 1$ 24. (a) Brown copper metal changed to black copper (II) oxide. (b) Gas G – Nitrogen gas ✓ 1 (c) $N2O_{(g)} + Cu_{(s)} \rightarrow CuO_{(s)} + N_{2(g)} \checkmark 1$ 25. - Hydrogen gas when ignited in oxygen is explosive. $\checkmark 1$ - Hydrogen gas is not commonly/readily available. 26. (a) A white solid \checkmark $\frac{1}{2}$ of magnesium oxide and \checkmark $\frac{1}{2}$ black specks of carbon are seen. (b) $CO_{2(g)} + 2Mg_{(s)} \rightarrow 2MgO_{(s)} + C_{(s)} \checkmark 1$ 27. $P_1 = 1$ atm $P_2 = 2atm$ $V_1 = 200 \text{cm}^3$ $V_2 = ?$ $T1 = 293k \checkmark \frac{1}{2}$ $T2 = 313k \checkmark \frac{1}{2}$ Combined Gas Law $\mathbf{V}_2 = \frac{P_1 V_1}{T_1} = \frac{P_1 V_1 T_2}{T_1 P_2}$ $=\frac{1 x 200 x 313}{293 x 2} \checkmark 1$ $= 106.826 \text{cm}^3 \checkmark 1$ 28. (a) (i) X : 2,8,3 ✓ 1 Y: 2.6 ✓ 1 NB: Use commas not dots. (b) W₂Y ✓ 1 (c) In molten or aqueous state. $\checkmark 1$ 29. (a) - Pipette for measuring and transferring fixed volumes. $\checkmark \frac{1}{2}$ - Measuring cylinder to measure approximate volumes of liquids $\sqrt{1/2}$ (b) - Round-bottomed: Used where heating is required. $\checkmark \frac{1}{2}$

- Flat-bottomed flask used where no heating is required. \checkmark 1/2